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Abstract
The nonlinear Landau–Zener problem for two-mode photoassociation of cold
atoms is studied. Based on an exact nonlinear Volterra integral equation for
molecular state probability, a limit nonlinear first-order differential equation
is applied to construct the first-order approximation to the solution of the
problem at a strong coupling limit. An accurate approximate expression for
the final transition probability to the molecular state is derived. The non-
transition probability turns out to be inversely proportional to the Landau–
Zener parameter in contrast to the linear two-state case when the dependence
is exponential.

PACS numbers: 32.80.Bx, 34.50.Rk, 03.75.Nt

The system of nonlinear semiclassical equations describing the time evolution of atomic and
molecular states in the process of molecule production in an atomic Bose–Einstein condensate
[1] via one-colour Raman photoassociation [2] or by magnetic-field Feshbach resonance [3]
in the rotating wave approximation reads [4, 5]

i
da1

dt
= U(t) e−iδ(t)ā1a2, i

da2

dt
= U(t)

2
eiδ(t)a1a1, (1)

where a1 and a2 are the atomic and molecular states’ amplitudes, respectively, δ(t) is the
detuning modulation function and U(t) is the Rabi frequency of the field.

We have previously shown that, for models with constant field amplitude, U = U0 =
const, this system at the initial condition a2(−∞) = 0 is equivalent to the following nonlinear
Volterra integral equation for the molecular state probability p = |a2|2 [6]:

p(t) = U 2
0

2

∫ t

−∞
K(t, x)(1 − 8p(x) + 12p2(x)) dx, (2)

where the kernel K(t, x) is given by

K(t, x) = (Cδ(t) − Cδ(x)) cos(δ(x)) + (Sδ(t) − Sδ(x) sin(δ(x)) (3)
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with the functions Cδ and Sδ defined as

Cδ(t) =
∫ t

−∞
cos(δ(x)) dx, Sδ(t) =

∫ t

−∞
sin(δ(x)) dx. (4)

In the case of small U 2
0 , this equation allows one to construct the solution of the problem in

the form of uniformly convergent series using Picard’s successive approximations [7]. The
opposite limit of strong interaction, however, cannot be treated by the same approach. In
our previous work [8], we studied this limit with the help of some limit nonlinear first-order
equation. In the present paper, we will show that a more elaborate study of the strong
interaction regime can be carried out on the basis of Volterra’s (exact) integral equation (2).
Below we present such a treatment which, notably, also justifies the application of the limit
equation that we have used earlier. Though we here restrict ourselves to the consideration of
the Landau–Zener model only, the presented approach is general and, slightly modified, can
be applied in the case of other analogous level-crossing models.

In the Landau–Zener model, the field amplitude is constant and the frequency detuning
linearly passes through zero: U = U0 = const, δt = 2δ0t [9]. Equation (2) can be rewritten
in the following form of a Volterra integral equation of the second kind:

p(t) = λ

4
f (t) − 4λ

∫ t

−∞
K(t, x)

(
p(x) − 3

2
p2(x)

)
dx, (5)

where λ = U 2
0

/
δ0 is the Landau–Zener parameter and the forcing function has the form

f (t) = π

2δ0




[
1

2
+ C

(√
2δ0

π
t

)]2

+

[
1

2
+ S

(√
2δ0

π
t

)]2

 , (6)

where C and S are the Fresnel functions [10].
It is not difficult to see that, in the case of strong coupling when λ � 1, the forcing

function f (t) specified by formula (6) cannot serve as an acceptable initial approximation
in practical calculations using Picard’s successive approximations, since for the given case
p0(+∞) = λf (+∞)/4 = λπ/4 � 1. For this reason, other approaches are to be searched
for. Consider integral equation (2) transformed by substitution p = p0 +u with some function
p0(t) which will be defined later. For the function u(t) we have the following integral equation:

u(t) = f0(t) − 4λ

∫ t

−∞
K(t, x)

[
(1 − 3p0(x))u(x) − 3

2
u2(x)

]
dx, (7)

with the forcing function f0(t) defined as

f0(t) = −p0 +
λ

2

∫ t

−∞
K(t, x)

(
1 − 8p0(x) + 12p2

0(x)
)

dx. (8)

It is evident that the better the approximation p0(t) is the smaller the f0(t) will become (f0

will be identically zero if p0 is the exact solution of equation (2)). It can be easily checked
that the function f0(t) obeys the following linear inhomogeneous differential equation:

f ′′′
0 − f ′′

0

t
+ 4t2f ′

0 = −
{
p′′′

0 − p′′
0

t
+ 4[t2 + λ(1 − 3p0)]p

′
0 +

λ

2t

(
1 − 8p0 + 12p2

0

)}
. (9)

Note that the homogeneous part of this equation does not depend on λ. Hence, in order to
get a solution as small as possible, we demand the terms proportional to λ and the term 4t2p′

0
that is not restricted in the infinite time interval to cancel the inhomogeneous part, which is
enclosed in braces. For p0(t) this gives the limit nonlinear first-order equation used in [8]:

4[t2 + λ(1 − 3p0)]p
′
0 +

λ

2t

(
1 − 8p0 + 12p2

0

) = 0. (10)
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Figure 1. The time evolution of the transition probability, λ = 5. 1: numerical result (solid line),
2: limit solution (11), (12), 3: final probability (35). The airy-function solution (20) for t < 2
and solution (28) for t > 2 are shown by the dotted line; in order to distinguish the graphs the
approximate solution is raised up.

It should be noted here that this choice of p0 is not unique. In fact, one may add to the derived
equation any other terms of the order of o(λ) or less, say, for instance, of the order of 1/λ,
without changing the leading asymptotic term.

As was shown in [8], equation (10) admits different particular solutions that can be
written in terms of elementary functions. Among these are two trivial ones, p0 = 1/2, 1/6,
and several non-trivial solutions. To construct an appropriate initial approximation, one may
combine these particular solutions. As a result, we get (see figure 1)

p0(t) = 1

6
+

2t

9λ

(
t +

√
t2 +

3λ

2

)
, t <

√
λ

2
, (11)

p0(t) = 1

2
, t >

√
λ

2
. (12)

This is a rather good approximation almost everywhere (an exception is the point
t = √

λ/2, where we encounter discontinuity in derivatives). Indeed, equation (9) now
reads

f ′′′
0 − f ′′

0

t
+ 4t2f ′

0 = −
{
p′′′

0 − p′′
0

t

}
. (13)

Since the function p0 given by expression (11) depends on variable t/
√

λ and the right-hand
side of equation (13) involves only the second- and third-order derivatives of p0, it is understood
that the inhomogeneous part of the obtained equation is of the order of 1/λ. Note that this term
is restricted everywhere excluding the origin. Consequently, the solution of equation (13) is
also of the order of 1/λ. Hence, solution (11), (12) provides a rather good forcing function to
treat equation (7)—the integral equation for the first approximation function u(t)—by Picard’s
successive approximations (compare with the forcing function p0 = λf (t)/4 of equation (5)
which is of the order of λ).

However, here we face another problem, which consists in the fact that, even though
the general solution to the homogeneous part of equation (13) is easily found, since it is the
equation satisfied by the Fresnel S and C functions, the particular solution to this equation for
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a limit function (11) cannot be written analytically. A possible way to overcome this difficulty
is to turn to the differential equation for p:

p′′′ − p′′

t
+ 4[t2 + λ(1 − 3p)]p′ +

λ

2t
(1 − 8p + 12p2) = 0. (14)

Having proven that limit function (11) is a good initial approximation, we can now linearize
this equation, using the same substitution p = p0 + u. As a result, neglecting the (small)
nonlinear terms, we get the following linear equation:

uttt − 1

t
utt + 4[t2 + λ(1 − 3p0)]ut − 4λ

t
(1 − 3p0 + 3p0t t)u +

(
p0t t t − 1

t
p0t t

)
= 0. (15)

The solution to this equation for the region t >
√

λ/2, where p0 = 1/2, is obtained by noting
that the substitution u = C(v − 1/2) with arbitrary constant C transforms the equation into
that of the linear Landau–Zener problem with the parameter λ(1 − 3p0) = −λ/2 acting as an
effective Landau–Zener parameter:

vttt − 1

t
vtt + 4[t2 + (−λ/2)]vt +

(−λ/2)

2t
(4 − 8v) = 0. (16)

Comparing this linear Landau–Zener equation with equation (14) we see that here the nonlinear
terms are of course absent and, additionally, in the last term the summand 1 is changed to
4—this is because of the normalization; in the linear case the second level probability is
normalized to unity while in the nonlinear case to 1/2.

In the region t <
√

λ/2, the exact solution to equation (15), however, is not known. For
this reason, we turn to asymptotic methods.

We start by noting that in the region 0 � t �
√

λ/2 we encounter several difficulties.
First, as it is immediately seen from equation (14), we have a singularity at the point t = 0.
It is this singularity that stands for the non-adiabatic transition in the systems governed by
initial equations (1). Second, a different zeroth-order approximation should be used for the
vicinity of the point t = √

λ/2. In addition, one should also note that the point t = √
λ/2

is a turning point for the linearized equation (15), since the term t2 + λ(1 − 3p0) vanishes at
this point. In the linear case, it is this turning point that is responsible for starting oscillations
in the region t >

√
λ/2 after a non-oscillatory pre-evolution at t <

√
λ/2. However, in

the nonlinear case under consideration, the role of this turning point is significantly altered
because of the nonlinear terms involved. In consequence, the evolution in the neighbourhood
of the critical point occurs in more complicated way, and the transition between oscillatory
and non-oscillatory regimes becomes more abrupt.

Nevertheless, we will now show that it is possible to construct a single uniformly valid
approximation for the whole region −∞ < t <

√
λ/2 +

√
1/λ including the neighbourhoods

of the most significant points, t = 0 and t = √
λ/2.

For this purpose, consider the following factorization of the exact equation for u(t):(
d

dt
− 1

t

)
(u′′ + 4[t2 + λ(1 − 3p0)]u + p′′

0 − 6λu2) − 4tu = 0. (17)

Note further that, in the region 0 < t <
√

λ/2, the function p0(t) can be approximated as

p0 = 1

3

(
1

2
+

t√
2λ

+
t2

λ

)
+ · · · , (18)

whence 4[t2 + λ(1 − 3p0)] ≈ 2λ(1 − t/
√

λ/2) and p′′
0 ≈ 2/(3λ) = const. As is then

immediately seen, if u becomes of the order of 1/λ the term −6λu2 becomes of the same
order as p′′

0 while the last term remains small under t �
√

λ/2. Therefore, for a moment, we
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neglect the last term in equation (17), thus decreasing the order of the differential equation, and
further treat the nonlinear term −6λu2 as a perturbation. A straightforward way to do this is to
replace u2 by a constant that can be afterwards adjusted by substituting the resulting solution
into equation (13) for the forcing function f (t) and further demanding the inhomogeneous
term to be o(1/λ), i.e., cancelling all the terms of the order of 1/λ. Note that in doing the last
step, we also account for the term −4tu that has been neglected for a while. As appears from
the aforesaid, the described technique is a variant of the strained parameters method [11] (we
alter constant 2/(3λ) which originates from p′′

0 ) that, evidently, apart from the nonlinearity,
correctly accounts for all other significant peculiarities of the exact initial equation (14) such
as the singularity at the origin, the turning point at t = √

λ/2 and all terms with derivatives.
Thus, neglecting the term −4tu and replacing p′′

0 − 6λu2 by a constant, say B, we easily
integrate equation (17) once and arrive at an inhomogeneous Airy equation [10]

u′′ + 2λ(1 − t/
√

λ/2)u + B + C0t = 0, C0 = const. (19)

The general solution to this equation is written as

ut�√
λ/2 = C0

2
√

2λ
+ A1Ai(τ ) + A2Bi(τ ) + u0(τ ), τ = λ1/6(

√
2t −

√
λ). (20)

u0 = (B + C0
√

λ/2)τ 2

4λ1/3
[0F1(; 2/3; τ 3/9)1F2(2/3; 4/3, 5/3; τ 3/9)

− 20F1(; 4/3; τ 3/9)1F2(1/3; 2/3, 4/3; τ 3/9)], (21)

where Ai and Bi are the Airy functions. Substituting this solution into equation (13) and
cancelling the terms of the order of 1/λ, we get

B = 2/9

λ
+

ln(λ)

λ2
, C0 = 1

λ
−

√
3 ln(λ)

λ2
(22)

and further find the constants A1,2 from the initial conditions (note that for λ � 1 we have
A1 ≈ 0 and A2 is defined from the equation ut�√

λ/2(0) = −2/(9λ2) + 1/(6λ3)).
This is a fairly good approximation (see figure 1, note that in order to distinguish the

graphs the approximate solution is raised up). For integral equation (7), formulae (20)–(22)
provide a forcing function that is of the order of 1/λ2 in the whole region t �

√
λ/2 even for

λ ≈ 1. This gives good first-order approximation for the whole region t ∈ (−∞,
√

λ/2) and
for all λ � 1 (the relative error being everywhere of the order of 10−3 or less).

The last step is now to calculate the final transition probability at t → +∞. Using
formulae (20)–(22), we get that the maximum of p(t) is achieved approximately at the point
tm

√
λ/2 +

√
1/λ, the initial conditions for the solution valid for region t � tm being at this

point given as

u(tm) = − 1

12λ
, u′(tm) = 0, u′′(tm) = −2

3

√
2

λ
. (23)

The matching procedure is rather cumbersome. In order to facilitate this procedure, it is
convenient to separate off a fundamental solution of equation (16) that is non-oscillatory in
the region t >

√
λ/2. This unique solution is given in terms of the solution to the linear

Landau–Zener problem with the parameter −λ/2 standing instead of λ and with argument −t

instead of t :

y1(t) = 1 − 2pLZ(−λ/2,−t). (24)

It is not difficult to see that this solution plays a distinguished role, since it alone can be used
to construct an appropriate initial approximation. Next, as two other fundamental solutions,
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we choose the following functions:

y2(t) = (1 − 2pLZ(−λ/2, +t)) /(−1 + 2 eπλ/2), (25)

y3(t) = t Im[1F1(iλ/8; 1/2;−iδ0t
2)1F1(1/2 − iλ/8; 3/2; iδ0t

2)]/F3∞, (26)

F3∞ = π eπλ/8

2
Im

(
(−1)1/4

�(1/2 − iπλ/8)�(1 + iπλ/8)

)
. (27)

Note that the chosen functions y1, y2 and y3 are normalized to unity at t → +∞.
Thus, the solution to the problem in the region t >

√
λ/2 can be rewritten as

pt>
√

λ/2 = 1
2 + C1(1 − 2pLZ(−λ/2,−t)) + C2y2 + C3y3. (28)

Now, the last two of the three conditions for matching this solution with p0 + ut�√
λ/2 give

C2 + C3 = 0. (29)

Since the fundamental solutions y1,2,3 are normalized to unity, this relation indicates that only
the non-oscillatory solution y1 contributes to the final transition probability, y2 and y3 thus
only standing for gradually vanishing oscillations around y1.

Further, the equation for determining the coefficient C1 of solution (28) is explicitly
written as
1

2
+ C1(1 − 2pLZ(−λ/2,−t = −

√
λ/2)) = 1

2
+

(
C0

2
√

2λ
+ A1Ai(0) + A2Bi(0)

)
, (30)

whence we have

C1 =
(

C0

2
√

2λ
+

A1/
√

3 + A2

31/6�(2/3)

) /
(1 − 2pLZ(−λ/2,−t = −

√
λ/2)). (31)

Since y1(t → +∞) = 1, we finally arrive at the following principal result:

p(+∞) = 1
2 + C1. (32)

This expression is the desired formula for the final transition probability. It can be checked
that this formula provides the final transition probability with a relative error less than 10−2

for all λ � 1. For sufficiently large λ(λ � 4) the formulae are highly simplified since then
A1 ≈ 0 and A2 is explicitly written as

A2 = 1

Bi(−λ2/3)

(
− 2

9λ2
− C0

2
√

2λ
− λ

(B + C0
√

λ/2)

4

[
0F1

(
; 2

3
; −λ2

9

)
1F2

(
2

3
; 4

3
,

5

3
; −λ2

9

)

− 2 0F1

(
; 4

3
; −λ2

9

)
1F2

(
1

3
; 2

3
,

4

3
; −λ2

9

)])
. (33)

Passing now to the asymptotes of involved hypergeometric functions, using standard
expansions [10], we get that the leading terms of the involved expressions are, respectively, of
the following orders:(

C0

2
√

2λ
+

A1/
√

3 + A2

31/6�(2/3)

)
∼ − 1

2λ
, (1 − 2pLZ(−λ/2,−t = −

√
λ/2)) ∼ 3π

4
, (34)

so that equation (32) reads

p(+∞) ≈ 1

2
− 2/(3π)

λ
. (35)

Thus, we have established an interesting result: in the strong coupling limit, the final
probability for non-transition to the molecular state is in the leading order of approximation
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inversely proportional to the Landau–Zener parameter [12] (in contrast to the linear two-state
case when the dependence is exponential [9]). In other words, the non-transition probability
is a linear function of the resonance crossing rate. Interestingly, such a linear dependence
on the resonance sweep rate was recently shown to be also the case for degenerate gases
of fermionic atoms subject to coupling via adiabatic passage through a Feshbach resonance
[13, 14]. We would like to note in conclusion that more accurate examination of formula (31)
slightly corrects the proportionality coefficient 2/(3π) ≈ 0.2122 in equation (35) to 0.2214.
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